Storm System Cat 4 Enduradeck Solid Color Acrylic Stains 418XX Series

ICP Construction

SECTION 1 IDENTIFICATION

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>Storm System Cat 4 Enduradeck Solid Color Acrylic Stains 418XX Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Not Available</td>
</tr>
<tr>
<td>Proper shipping name</td>
<td>Environmentally hazardous substance, liquid, n.o.s.</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Recommended use of the chemical and restrictions on use

| Relevant identified uses | Exterior wood siding, fencing and decking stain |

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>ICP Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>150 Dascomb Road MA 01810 United States</td>
</tr>
<tr>
<td>Telephone</td>
<td>923-623-9980</td>
</tr>
<tr>
<td>Fax</td>
<td>Not Available</td>
</tr>
<tr>
<td>Website</td>
<td>https://www.icp-construction.com/</td>
</tr>
<tr>
<td>Email</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Emergency phone number

<table>
<thead>
<tr>
<th>Association / Organisation</th>
<th>Chemtel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency telephone numbers</td>
<td>1-800-255-3924</td>
</tr>
<tr>
<td>Other emergency telephone numbers</td>
<td>1-813-248-0585</td>
</tr>
</tbody>
</table>

SECTION 2 HAZARD(S) IDENTIFICATION

Classification of the substance or mixture

Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances)

| Classification | Skin Corrosion/Irritation Category 2, Serious Eye Damage Category 1, Skin Sensitizer Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Carcinogenicity Category 1A, Acute Aquatic Hazard Category 2, Chronic Aquatic Hazard Category 2 |

Label elements

<table>
<thead>
<tr>
<th>Hazard pictogram(s)</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SIGNAL WORD</th>
<th>DANGER</th>
</tr>
</thead>
</table>

Hazard statement(s)

<table>
<thead>
<tr>
<th>Hazard statement(s)</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>H315</td>
<td>Causes skin irritation.</td>
</tr>
<tr>
<td>H318</td>
<td>Causes serious eye damage.</td>
</tr>
<tr>
<td>H317</td>
<td>May cause an allergic skin reaction.</td>
</tr>
<tr>
<td>H335</td>
<td>May cause respiratory irritation.</td>
</tr>
</tbody>
</table>

Continued...
Hazard(s) not otherwise specified
Not Applicable

Precautionary statement(s) Prevention
P101 If medical advice is needed, have product container or label at hand.
P102 Keep out of reach of children.

Precautionary statement(s) Response
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P308+P313 IF exposed or concerned: Get medical advice/attention.

Precautionary statement(s) Storage
P405 Store locked up.
P403+P233 Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal
P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>%[weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>13463-67-7</td>
<td>10-30</td>
<td>titanium dioxide</td>
</tr>
<tr>
<td>1317-65-3</td>
<td>10-30</td>
<td>calcium carbonate</td>
</tr>
<tr>
<td>57-55-6</td>
<td>3-7</td>
<td>propylene glycol</td>
</tr>
<tr>
<td>1897-45-6</td>
<td>0.1-1</td>
<td>chlorothalonil</td>
</tr>
<tr>
<td>68412-54-4</td>
<td>0.1-1</td>
<td>nonylphenol ethoxylate, branched</td>
</tr>
<tr>
<td>26172-55-4</td>
<td>0.1-1</td>
<td>5-chloro-2-methyl-4-isothiazolin-3-one</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST-AID MEASURES

Description of first aid measures

Eye Contact
If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

Ingestion
- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Most important symptoms and effects, both acute and delayed
See Section 11

Indication of any immediate medical attention and special treatment needed
Treat symptomatically.
To treat poisoning by the higher aliphatic alcohols (up to C7):
- Gastric lavage with copious amounts of water.
- It may be beneficial to instill 60 ml of mineral oil into the stomach.
- Oxygen and artificial respiration as needed.
- Electrolyte balance: it may be useful to start 500 ml M/6 sodium bicarbonate intravenously but maintain a cautious and conservative attitude toward electrolyte replacement unless shock or severe acidosis threatens.
To protect the liver, maintain carbohydrate intake by intravenous infusions of glucose. Haemodialysis if coma is deep and persistent.

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for shock.
- Monitor and treat, where necessary, for pulmonary oedema.
- Anticipate and treat, where necessary, for seizures.
- **DO NOT** use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- If the patient is hypoglycaemic (decreased or loss of consciousness, tachycardia, pallor, dilated pupils, diaphoresis and/or dextrose strip or glucometer readings below 50 mg), give 50% dextrose.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Acidosis may respond to hyperventilation and bicarbonate therapy.
- Haemodialysis might be considered in patients with severe intoxication.
- Consult a toxicologist as necessary.

SECTION 5 FIRE-FIGHTING MEASURES

Extinguishing media

- Alcohol stable foam.
- Dry chemical powder.

Special hazards arising from the substrate or mixture

| Fire Incompatibility | None known. |

Special protective equipment and precautions for fire-fighters

| Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard.
| | Wear breathing apparatus plus protective gloves in the event of a fire. |
| Fire/Explosion Hazard | Non combustible.
| | Not considered a significant fire risk, however containers may burn.
| | May emit poisonous fumes. |

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

| Minor Spills | Environmental hazard - contain spillage.
| | Clean up all spills immediately.
| | Avoid breathing vapours and contact with skin and eyes. |
| Major Spills | Environmental hazard - contain spillage.
| | Absorb or contain isothiazolinone liquid spills with sand, earth, inert material or vermiculite.
| | The absorbent (and surface soil to a depth sufficient to remove all of the biocide) should be shovelled into a drum and treated with an 11% solution of sodium metabisulfite (Na2S2O5) or sodium bisulfite (NaHSO3), or 12% sodium sulfite (Na2SO3) and 8% hydrochloric acid (HCl). |

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling
Safe handling
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- **DO NOT** allow clothing wet with material to stay in contact with skin.

Other information
- Store in original containers.
- Keep containers securely sealed.

Conditions for safe storage, including any incompatibilities

Suitable container
- Lined metal can, lined metal pail/can.
- Plastic pail.
- For low viscosity materials.
- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

All inner and sole packagings for substances that have been assigned to Packaging Groups I or II on the basis of inhalation toxicity criteria, must be hermetically sealed.

Storage incompatibility
- Calcium carbonate:
 - is incompatible with acids, ammonium salts, fluorine, germanium, lead diacetate, magnesium, mercurochrome chloride, silicon, silver nitrate, titanium.
 - Contact with acid generates carbon dioxide gas, which may pressurise and then rupture closed containers.
 - Glycols and their ethers undergo violent decomposition in contact with 70% perchloric acid. This seems likely to involve formation of the glycol percarbonate esters (after scission of ethers) which are explosive, those of ethylene glycol and 3-chloro-1,2-propanediol being more powerful than glyceryl nitrate, and the former so sensitive that it explodes on addition of water.
 - Titanium dioxide:
 - reacts with strong acids, strong oxidisers.
 - reacts violently with aluminium, calcium, hydrazine, lithium (at around 200 deg C), magnesium, potassium, sodium, zinc, especially at elevated temperatures - these reactions involves reduction of the oxide and are accompanied by incandescence.
 - dust or powders can ignite and then explode in a carbon dioxide atmosphere.
 - **WARNING:** Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive.

Alcohols
- are incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents.
- reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen.
- react with strong acids, strong caustics, aliphatic amines, isocyanates, azetaldheyde, benzoic/peroxide, chronic acid, chromium oxide, dicyclohexylamine.
- dichlorine oxide, ethylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, hydrogen dioxide, pentfluoroguanidine, phosphorus halides, phosphorus pentasulfide, tangerine oil, triethylaluminium, trisobutylaluminium.
- should not be heated above 49 deg.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US NIOSH Recommended Exposure Limits (RELs)</td>
<td>titanium dioxide</td>
<td>Rutile, Titanium oxide, Titanium peroxide</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Ca See Appendix A</td>
</tr>
<tr>
<td>US ACGIH Threshold Limit Values (TLV)</td>
<td>titanium dioxide</td>
<td>Titanium dioxide</td>
<td>10 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>TLV® Basis: LRT 1r</td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z1</td>
<td>titanium dioxide</td>
<td>Titanium dioxide</td>
<td>15 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Total dust</td>
</tr>
<tr>
<td>US NIOSH Recommended Exposure Limits (RELs)</td>
<td>calcium carbonate</td>
<td>Calcium salt of carbonic acid [Note: Occurs in nature as as limestone, chalk, marble, dolomite, aragonite, calcite and oyster shells.]</td>
<td>10 (total), 5 (resp) mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>US NIOSH Recommended Exposure Limits (RELs)</td>
<td>calcium carbonate</td>
<td>Calcium carbonate. Natural calcium carbonate [Note: Calcite & aragonite are commercially important natural calcium carbonates.]</td>
<td>10 (total), 5 (resp) mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>US NIOSH Recommended Exposure Limits (RELs)</td>
<td>calcium carbonate</td>
<td>Calcium carbonate, Natural calcium carbonate [Note: Marble is a metamorphic form of calcium carbonate.]</td>
<td>10 (total), 5 (resp) mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z1</td>
<td>calcium carbonate</td>
<td>Marble - Respirable fraction</td>
<td>5 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z1</td>
<td>calcium carbonate</td>
<td>Marble</td>
<td>15 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Total dust</td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z1</td>
<td>calcium carbonate</td>
<td>Limestone - Respirable fraction</td>
<td>5 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z1</td>
<td>calcium carbonate</td>
<td>Calcium carbonate - Respirable fraction</td>
<td>5 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z1</td>
<td>calcium carbonate</td>
<td>Calcium carbonate</td>
<td>15 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Total dust</td>
</tr>
<tr>
<td>US OSHA Permissible Exposure Levels (PELs) - Table Z1</td>
<td>calcium carbonate</td>
<td>Limestone</td>
<td>15 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Total dust</td>
</tr>
</tbody>
</table>

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>titanium dioxide</td>
<td>Titanium oxide; (Titanium dioxide)</td>
<td>30 mg/m³</td>
<td>330 mg/m³</td>
<td>2,000 mg/m³</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>Limestone; (Calcium carbonate; Dolomite)</td>
<td>45 mg/m³</td>
<td>500 mg/m³</td>
<td>3,000 mg/m³</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>Carbonic acid, calcium salt</td>
<td>45 mg/m³</td>
<td>210 mg/m³</td>
<td>1,300 mg/m³</td>
</tr>
<tr>
<td>propylene glycol</td>
<td>Polypropylene glycols</td>
<td>30 mg/m³</td>
<td>330 mg/m³</td>
<td>2,000 mg/m³</td>
</tr>
</tbody>
</table>
Ingredient | **Original IDLH** | **Revised IDLH**
--- | --- | ---
propylene glycol | Propylene glycol; (1,2-Propanediol) | 30 mg/m³ | 1,300 mg/m³ | 7,900 mg/m³
chlorothalonil | Chlorothalonil; (Tetrachloroisophthalonitrile) | 0.13 mg/m³ | 1.4 mg/m³ | 8.6 mg/m³
nonylphenol ethoxylate, branched | Nonylphenoxypolyethoxylanol | 30 mg/m³ | 330 mg/m³ | 2,000 mg/m³
5-chloro-2-methyl-4-isothiazolin-3-one | Chloro-2-methyl-4-isothiazolin-3-one, 5- | 0.6 mg/m³ | 6.6 mg/m³ | 40 mg/m³

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

Personal protection

- Safety glasses with side shields.
- Chemical goggles.

Eye and face protection

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

Hands/feet protection

- The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer.
- Where the chemical is a preparation of several substances, the resistance of the glove material cannot be calculated in advance and has therefore to be checked prior to the application.
- Butyl rubber gloves
- Nitrile rubber gloves

Body protection

- See Other protection below

Other protection

- Overall.
- Eyewash unit.

Thermal hazards

- Not Available

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Not Available</td>
</tr>
<tr>
<td>Physical state</td>
<td>Liquid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>8.5</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Immiscible</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Available</td>
</tr>
</tbody>
</table>
SECTION 10 STABILITY AND REACTIVITY

Reactivity
See section 7

Chemical stability
- Unstable in the presence of incompatible materials.
- Product is considered stable.

Possibility of hazardous reactions
See section 7

Conditions to avoid
See section 7

Incompatible materials
See section 7

Hazardous decomposition products
See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may produce toxic effects. The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Aliphatic alcohols with more than 3 carbons cause headache, dizziness, drowsiness, muscle weakness and delirium, central depression, coma, seizures and behavioural changes. Secondary respiratory depression and failure, as well as low blood pressure and irregular heart rhythms, may follow.

The material is not thought to produce adverse health effects following ingestion (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum. Overexposure to non-ring alcohols causes nervous system symptoms. These include headache, muscle weakness and inco-ordination, giddiness, confusion, delirium and coma. Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Taken by mouth, isothiazolinones have moderate to high toxicity. The major signs of toxicity are severe stomach irritation, lethargy, and inco-ordination. Dusts of titanium and titanium compounds are thought to exhibit little or no toxic effects.

The material may accentuate any pre-existing dermatitis condition. Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man. Solutions of isothiazolinones may be irritating or even damaging to the skin, depending on concentration. A concentration of over 0.1% can irritate, and over 0.5% can cause severe irritation.

Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Substitutional accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Dusts of titanium and titanium compounds are thought to exhibit little or no toxic effects.

The material is not thought to produce adverse health effects following ingestion (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum. Overexposure to non-ring alcohols causes nervous system symptoms. These include headache, muscle weakness and inco-ordination, giddiness, confusion, delirium and coma. Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Taken by mouth, isothiazolinones have moderate to high toxicity. The major signs of toxicity are severe stomach irritation, lethargy, and inco-ordination. Dusts of titanium and titanium compounds are thought to exhibit little or no toxic effects.

Eye contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Dusts of titanium and titanium compounds are thought to exhibit little or no toxic effects.

The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.

Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation.
Acute Toxicity

<table>
<thead>
<tr>
<th>Substance</th>
<th>[i] Value obtained from Europe ECHA Registered Substances - Acute toxicity 2</th>
<th>Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorothalonil</td>
<td>Toxicity</td>
<td>IRRITATION</td>
</tr>
<tr>
<td>Dermal (rat): LD50: >2500 mg/kg</td>
<td></td>
<td>Not Available</td>
</tr>
<tr>
<td>Inhalation (rat): LC50: 0.0775 mg/l/1h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral (rat): LD50: 10000 mg/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonylphenol ethoxylate, branched</td>
<td>Toxicity</td>
<td>IRRITATION</td>
</tr>
<tr>
<td>Dermal (rabbit): LD50: >2000 mg/kg</td>
<td></td>
<td>Eye: Severe</td>
</tr>
<tr>
<td>Oral (rat): LD50: >15 mg/kg</td>
<td></td>
<td>Skin: Severe</td>
</tr>
<tr>
<td>5-Chloro-2-methyl-4-isothiazolin-3-one</td>
<td>Toxicity</td>
<td>IRRITATION</td>
</tr>
<tr>
<td>Oral (rat): LD50: >5 mg/kg</td>
<td></td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2
2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Storm System Cat 4 Enduradeck Solid Color Acrylic</th>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
</table>

Legend:

- ! - Data available but does not fill the criteria for classification
- ✔ - Data available to make classification
- ✘ - Data Not Available to make classification
Ingredient Persistence: Water/Soil Persistence: Air

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>titanium dioxide</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>propylene glycol</td>
<td>LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>chlorothalonil</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>5-chloro-2-methyl-4-isothiazolin-3-one</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Bioaccumulation Potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>titanium dioxide</td>
<td>LOW (BCF = 10)</td>
</tr>
</tbody>
</table>

Environmental Fate

- **titanium dioxide:** HIGH
- **propylene glycol:** LOW
- **chlorothalonil:** HIGH
- **5-chloro-2-methyl-4-isothiazolin-3-one:** HIGH

Toxicity Data

ENDPOINT	**TEST DURATION (HR)**	**SPECIES**	**VALUE**	**SOURCE**
LC50 | 96 | Fish | 1555mg/L | 2
EC50 | 48 | Crustacea | >10mg/L | 2
EC50 | 72 | Algae or other aquatic plants | 5.83mg/L | 4
EC50 | 72 | Algae or other aquatic plants | 1.81mg/L | 4
NOEC | 336 | Fish | 0.089mg/L | 4

ENDPOINT	**TEST DURATION (HR)**	**SPECIES**	**VALUE**	**SOURCE**
LC50 | 96 | Fish | >56000mg/L | 4
EC50 | 72 | Algae or other aquatic plants | >14mg/L | 2
NOEC | 72 | Algae or other aquatic plants | 14mg/L | 2

ENDPOINT	**TEST DURATION (HR)**	**SPECIES**	**VALUE**	**SOURCE**
LC50 | 96 | Fish | 710mg/L | 4
EC50 | 48 | Crustacea | >1000mg/L | 4
EC50 | 96 | Algae or other aquatic plants | 19000mg/L | 2
NOEC | 168 | Fish | 98mg/L | 4

ENDPOINT	**TEST DURATION (HR)**	**SPECIES**	**VALUE**	**SOURCE**
LC50 | 96 | Fish | 0.0076mg/L | 4
EC50 | 48 | Crustacea | 0.0066475mg/L | 4
EC50 | 72 | Algae or other aquatic plants | 0.0068mg/L | 4
BCF | 336 | Algae or other aquatic plants | 0.02mg/L | 4
NOEC | 240 | Crustacea | 0.0003mg/L | 4

ENDPOINT	**TEST DURATION (HR)**	**SPECIES**	**VALUE**	**SOURCE**
LC50 | 96 | Fish | 0.136mg/L | 2
NOEC | 2184 | Fish | ca.0.006mg/L | 2

ENDPOINT	**TEST DURATION (HR)**	**SPECIES**	**VALUE**	**SOURCE**
LC50 | 96 | Fish | 0.0076mg/L | 4
EC50 | 48 | Crustacea | 0.0066475mg/L | 4
EC50 | 72 | Algae or other aquatic plants | 0.0068mg/L | 4
BCF | 336 | Algae or other aquatic plants | 0.02mg/L | 4
NOEC | 240 | Crustacea | 0.0003mg/L | 4

Legend:

- Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.
- Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.
- Environmental Fate: Isothiazolinones are antimicrobials used to control bacteria, fungi, and for wood preservation and antifouling agents. They are frequently used in personal care products such as shampoos and other hair care products, as well as certain paint formulations. **DO NOT** discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>titanium dioxide</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>propylene glycol</td>
<td>LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>chlorothalonil</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>5-chloro-2-methyl-4-isothiazolin-3-one</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>titanium dioxide</td>
<td>LOW (BCF = 10)</td>
</tr>
</tbody>
</table>

Notes

- Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

- Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

- Propylene glycol is known to exert high levels of biochemical oxygen demand (BOD) during degradation in surface waters. This process can adversely affect aquatic life by consuming oxygen needed by aquatic organisms for survival.

- Environmental Fate: Isothiazolinones are antimicrobials used to control bacteria, fungi, and for wood preservation and antifouling agents. They are frequently used in personal care products such as shampoos and other hair care products, as well as certain paint formulations. **DO NOT** discharge into sewer or waterways.
Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>propylene glycol</td>
<td>LOW (BCF = 1)</td>
</tr>
<tr>
<td>chlorothalonil</td>
<td>LOW (BCF = 125)</td>
</tr>
<tr>
<td>5-chloro-2-methyl-4-isothiazolin-3-one</td>
<td>LOW (LogKOW = 0.0444)</td>
</tr>
<tr>
<td>titanium dioxide</td>
<td>LOW (KOC = 23.74)</td>
</tr>
<tr>
<td>propylene glycol</td>
<td>HIGH (KOC = 1)</td>
</tr>
<tr>
<td>chlorothalonil</td>
<td>LOW (KOC = 2392)</td>
</tr>
<tr>
<td>5-chloro-2-methyl-4-isothiazolin-3-one</td>
<td>LOW (KOC = 45.15)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Containers may still present a chemical hazard/danger when empty.
- Return to supplier for reuse/recycling if possible.
- Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area.
- **DO NOT** allow wash water from cleaning or process equipment to enter drains.

Special precautions for user

- Special provisions: 8, 146, 173, 335, IB3, T4, TP1, TP29

SECTION 14 TRANSPORT INFORMATION

Labels Required

- Marine Pollutant
- Environmental hazard: Environmentally hazardous

Land transport (DOT)

- **UN number**: 3082
- **UN proper shipping name**: Environmentally hazardous substance, liquid, n.o.s.
- **Transport hazard class(es)**
 - Class 9
 - Subrisk Not Applicable
- **Packing group**: III
- **Environmental hazard**: Environmentally hazardous
- **Special precautions for user**
 - Hazard Label 9
 - Special provisions: 8, 146, 173, 335, IB3, T4, TP1, TP29

Air transport (ICAO-IATA / DGR)

- **UN number**: 3082
- **UN proper shipping name**: Environmentally hazardous substance, liquid, n.o.s. *
- **Transport hazard class(es)**
 - ICAO/IATA Class 9
 - ICAO / IATA Subrisk Not Applicable
 - ERG Code 9L
- **Packing group**: III
- **Environmental hazard**: Environmentally hazardous
- **Special precautions for user**
 - Cargo Only Packing Instructions 964
 - Cargo Only Maximum Qty / Pack 450 L
 - Passenger and Cargo Packing Instructions 964

Continued...
Passenger and Cargo Maximum Qty / Pack: 450 L
Passenger and Cargo Limited Quantity Packing Instructions: Y964
Passenger and Cargo Limited Maximum Qty / Pack: 30 kg G

Sea transport (IMDG-Code / GGVSee)

<table>
<thead>
<tr>
<th>UN number</th>
<th>3082</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.</td>
</tr>
<tr>
<td>Transport hazard class(es)</td>
<td>IMDG Class: 9, IMDG Subrisk: Not Applicable</td>
</tr>
<tr>
<td>Packing group</td>
<td>III</td>
</tr>
<tr>
<td>Environmental hazard</td>
<td>Marine Pollutant</td>
</tr>
</tbody>
</table>

Special precautions for user
EMS Number: F-A, S-F
Special provisions: 274 335 969
Limited Quantities: 5 L

Transport in bulk according to Annex II of MARPOL and the IBC code
Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

TITANIUM DIOXIDE(13463-67-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS
International Agency for Research on Cancer (IARC) - Agents Classified by the IARC
Monographs
US - Alaska Limits for Air Contaminants
US - California Permissible Exposure Limits for Chemical Contaminants
US - California Proposition 65 - Carcinogens
US - Hawaii Air Contaminant Limits
US - Idaho - Limits for Air Contaminants
US - Massachusetts - Right To Know Listed Chemicals
US - Michigan Exposure Limits for Air Contaminants
US - Minnesota Permissible Exposure Limits (PELs)
US - Oregon Permissible Exposure Limits (Z-1)
US - Pennsylvania - Hazardous Substance List
US - Rhode Island Hazardous Substance List
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants
US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants
US - Washington Permissible exposure limits of air contaminants
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
US ACGIH Threshold Limit Values (TLV)
US ACGIH Threshold Limit Values (TLV) - Carcinogens
US List of Active Substances Exempt from the TSCA Inventory Notifications (Active-Inactive) Rule
US NIOSH Recommended Exposure Limits (RELs)
US OSHA Permissible Exposure Levels (PELs) - Table Z1
US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory
US TSCA Chemical Substance Inventory - Interim List of Active Substances

CALCIUM CARBONATE(1317-65-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS
US - Alaska Limits for Air Contaminants
US - California Permissible Exposure Limits for Chemical Contaminants
US - Hawaii Air Contaminant Limits
US - Idaho - Limits for Air Contaminants
US - Massachusetts - Right To Know Listed Chemicals
US - Michigan Exposure Limits for Air Contaminants
US - Minnesota Permissible Exposure Limits (PELs)
US - Oregon Permissible Exposure Limits (Z-1)
US - Pennsylvania - Hazardous Substance List
US - Rhode Island Hazardous Substance List
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants
US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants
US - Washington Permissible exposure limits of air contaminants
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants
US ACGIH Threshold Limit Values (TLV)
US List of Active Substances Exempt from the TSCA Inventory Notifications (Active-Inactive) Rule
US NIOSH Recommended Exposure Limits (RELs)
US OSHA Permissible Exposure Levels (PELs) - Table Z1
US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory
US TSCA Chemical Substance Inventory - Interim List of Active Substances

PROPYLENE GLYCOL(57-55-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS
US - Pennsylvania - Hazardous Substance List
US - Rhode Island Hazardous Substance List
US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values
US AIHA Workplace Environmental Exposure Levels (WEELs)
US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)
US List of Active Substances Exempt from the TSCA Inventory Notifications (Active-Inactive) Rule
US Spacecraft Maximum Allowable Concentrations (SMACs) for Airborne Contaminants
US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory
US TSCA Chemical Substance Inventory - Interim List of Active Substances

CHLOROTHALONIL(1897-45-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS
US - Pennsylvania - Hazardous Substance List
US - Rhode Island Hazardous Substance List
US AIHA Workplace Environmental Exposure Levels (WEELs)
US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)
US List of Active Substances Exempt from the TSCA Inventory Notifications (Active-Inactive) Rule
US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory
US TSCA Chemical Substance Inventory - Interim List of Active Substances

Continued...
Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)

<table>
<thead>
<tr>
<th>SECTION 311/312 HAZARD CATEGORIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate (acute) health hazard</td>
</tr>
<tr>
<td>Delayed (chronic) health hazard</td>
</tr>
<tr>
<td>Fire hazard</td>
</tr>
<tr>
<td>Pressure hazard</td>
</tr>
<tr>
<td>Reactivity hazard</td>
</tr>
</tbody>
</table>

US, EPA CERCLA HAZARDOUS SUBSTANCES AND REPORTABLE QUANTITIES (40 CFR 302.4)

None Reported

State Regulations

US, CALIFORNIA PROPOSITION 65

WARNING: This product contains a chemical known to the State of California to cause cancer and birth defects or other reproductive harm

US, CALIFORNIA PROPOSITION 65 - CARCINOGENS & REPRODUCTIVE TOXICITY (CRT); LISTED SUBSTANCE

Titanium dioxide (airborne, unbound particles of respirable size), Chlorothalonil Listed

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSl</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>N (chlorothalonil; propylene glycol; 5-chloro-2-methyl-4-isothiazolin-3-one; nonylphenol ethoxylate, branched)</td>
</tr>
<tr>
<td>China - IECC</td>
<td>Y</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>N (nonylphenol ethoxylate, branched)</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>Y</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Y</td>
</tr>
</tbody>
</table>

Legend:
Y = All ingredients are on the inventory
N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

CONTACT POINT

PLEASE NOTE THAT TITANIUM DIOXIDE IS NOT PRESENT IN CLEAR OR NEUTRAL BASES

Other information

Ingredients with multiple cas numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>calcium carbonate</td>
<td>471-34-1, 13397-26-7, 15634-14-7, 1317-65-3, 72609-12-9, 878759-26-3, 63660-97-9, 459411-10-0, 198352-33-9, 146358-95-4</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings.

Definitions and abbreviations

PC – TWA: Permissible Concentration-Time Weighted Average
PC – STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index

Powered by AuthorITe, from Chemwatch.